If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=747
We move all terms to the left:
b^2-(747)=0
a = 1; b = 0; c = -747;
Δ = b2-4ac
Δ = 02-4·1·(-747)
Δ = 2988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2988}=\sqrt{36*83}=\sqrt{36}*\sqrt{83}=6\sqrt{83}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{83}}{2*1}=\frac{0-6\sqrt{83}}{2} =-\frac{6\sqrt{83}}{2} =-3\sqrt{83} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{83}}{2*1}=\frac{0+6\sqrt{83}}{2} =\frac{6\sqrt{83}}{2} =3\sqrt{83} $
| 6(x-2)+4(x-1)=10 | | (-8-3x)/2=11 | | w(2w+5)=28 | | 19-2x+6x-1=63 | | 9y+4=1/5 | | 73+6x=56+4x= | | 5x+6+6=3x | | x/9+8=44 | | (1073+1108m)=1000 | | -28=-4-4x | | 28.77=6g+3.69 | | 3x=-215 | | 43=5n+13 | | 7x+16-3x=5x+20 | | 3y(4y+19)=-13 | | 5w^2-12w-1=-5 | | 9+1.25x=14+.75x= | | ×6.8x+9.3=-9.4+6.8-17x | | -12x=135-63x | | ×6.8x+9.3=-9.4+3.4(2-5x) | | −9−|3x−6|=−33 | | 6.4-n=10.1 | | 38-6v=4(-8-5v) | | 2x-2-2=4x | | 1298x-829=590x-354 | | 7(x-1)+2=5x+2(-4+x) | | m+171=337 | | 3(x-18.7)=180 | | 3y+15=5y-3 | | 156=6(4n+2) | | (9.2x-3)+(9.2x-3)+7.3x+7.3x=324 | | 2b+4(b-6)=-14)+98 |